Worksheet: Nuclear Binding Energy

Q1: An atom of ${ }_{26}^{56} \mathrm{Fe}$ has a mass of 55.9349 u , including electrons. Calculate, to 3 significant figures, the binding energy per nucleon for this nuclide, approximate the answers to 3 significant figures and in MeV .

A	8.35 MeV
B	8.70 MeV
C	7.89 MeV
D	8.79 MeV
E	8.55 MeV

Q2: An atom of ${ }_{9}^{19} \mathrm{~F}$ has a mass of 18.9984 u , including electrons. Calculate the binding energy per nucleon for this nuclide, approximate the answers to 3 significant figures and in MeV .

$$
\text { A } \quad 7.78 \mathrm{MeV}
$$

B $\quad 8.39 \mathrm{MeV}$

C $\quad 8.15 \mathrm{MeV}$

D $\quad 7.54 \mathrm{MeV}$

E $\quad 8.66 \mathrm{MeV}$

Q3: An atom of ${ }_{2}^{4} \mathrm{He}$ has a mass of 4.0026 u , including electrons. Calculate the total binding energy for this nuclide, approximate the answers to 3 significant figures and in MeV .
A 28.3 MeV

B $\quad 26.7 \mathrm{MeV}$
C $\quad 27.3 \mathrm{MeV}$
D $\quad 30.4 \mathrm{MeV}$
E $\quad 29.3 \mathrm{MeV}$

Q4: The total mass of one atom of ${ }_{28}^{60} \mathrm{Ni}$, including electrons, is 59.93079 u . Calculate to 3 significant figures the nuclear binding energy per nucleon in mega-electron volts.

$$
\text { A } \quad 8.54 \mathrm{MeV}
$$

B $\quad 8.74 \mathrm{MeV}$

C $\quad 8.70 \mathrm{MeV}$

D $\quad 8.78 \mathrm{MeV}$

E $\quad 8.50 \mathrm{MeV}$

Q5: The total mass of one atom of ${ }_{9}^{19} \mathrm{~F}$, including electrons, is 18.99840 u . Calculate to 3 significant figures the nuclear binding energy per nucleon in mega-electron volts.

A $\quad 7.30 \mathrm{MeV}$
B $\quad 7.78 \mathrm{MeV}$
C $\quad 7.54 \mathrm{MeV}$
D $\quad 8.39 \mathrm{MeV}$
E $\quad 7.10 \mathrm{MeV}$

Q6: An atom of ${ }^{8} \mathrm{~B}($ mass $=8.0246 \mathrm{u})$ decays into an atom of ${ }^{8} \mathrm{Be}$ (mass $=$ 8.0053 u) by electron capture. Calculate, to 3 significant figures, the energy released by this reaction. Calculate the total binding energy for this nuclide in MeV .

A $\quad 17.5 \mathrm{MeV}$

B \quad 18.0 MeV

C $\quad 16.7 \mathrm{MeV}$
D 19.3 MeV

E $\quad 19.8 \mathrm{MeV}$

Q7: Helium-4 can be produced by nuclear fusion of lithium-6 with deuterium.

$$
{ }_{3}^{6} \mathrm{Li}+{ }_{1}^{2} \mathrm{H} \longrightarrow 2{ }_{2}^{4} \mathrm{He}
$$

The atomic masses of lithium-6, deuterium, and helium-4 are 6.01512 u , 2.01410 u , and 4.00260 u respectively. Calculate to 3 significant figures the energy released by this fusion reaction.

```
A 26.8 MeV
    B 22.4 MeV
    C 5.92 MeV
    D 15.5 MeV
    E 1.47 MeV
```

Q8: The total mass of one atom of ${ }_{1}^{3} \mathrm{H}$, including electrons, is 3.016049 u . Calculate to 3 significant figures the nuclear binding energy per nucleon for this atom.

A $\quad 2.37 \mathrm{MeV}$
B 3.26 MeV
C $\quad 3.17 \mathrm{MeV}$
D 2.65 MeV
E $\quad 2.83 \mathrm{MeV}$

